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1. INTRODUCTION 
A Hidden Markov Model  (HMM) can be considered a state machine in which 

state transitions and state outputs, or observations, are probabilistic. HMM’s are used to 
learn and classify sequences of observables. HMM technology has been used 
successfully in a diverse set of applications, such as speech recognition [Da, Pi], Gene 
prediction [Rä], and Cryptanalysis [Si]. 

Because of the probabilistic nature of the underlying process being observed by 
HMM’s, they are not used often to recognize long-periodic sequences. Rather, they are 
mostly used as discriminators, to determine whether one HMM is better than another. For 
example, an HMM-based speech recognition system may have each HMM represent a 
word, with run time voice recognition choosing the HMM that best fits the incoming 
sequence of speech features. 

This is in contrast with Deterministic Finite Automata (DFA) [HWU], Finite 
State Machines (FSM’s) [KJ], or Harel-Statecharts [Ha, D1, D2], which are often used to 
identify and classify individual sequences. Stated differently, because HMM’s identify 
individual sequences of external observables with a relatively low probability, it is 
usually not perceived as convincing evidence of the occurrence of a particular sequence.  

Run-time Verification (RV) of formal specification assertions (RV), also known 
as Run-time Execution Monitoring (REM), is a class of methods for monitoring the 
sequencing and temporal behavior of an underlying application and comparing it to the 
correct behavior as specified by a formal specification.  

Some published RV tools and techniques are: the TemporalRover/DBRover [D3], PaX 
[HR] and RT-Mac [SLS], all of which use extensions and variants of Propositional 
Linear-time Temporal Logic (PLTL) as the specification language of choice, and the 
StateRover [SR] that uses deterministic and non-deterministic statechart diagrams as its 
specification language. In [D2], Drusinsky describes the application of RV using 
statechart assertions to the verification of DoD and NASA applications, and to those of 
the Brazilian Space agency 

Execution-based Model Checking (EMC) is a combination of RV and Automatic 
Test Generation (ATG). With EMC, a large volume of automatically generated tests are 
used to exercise the program or System Under Test (SUT), using RV on the other end to 
check the SUT’s conformance to the formal specification. Some ATG tools that, when 
combined with RV tools, create an EMC technique are the StateRover’s white-box 
automatic test-generator [SR] and NASA’s Java Path Finder (JPF) [HP]. 

Runtime Monitoring (RM) is a technique for monitoring system behavior with 
respect to formally specified properties, but for purposes other than verification, such as 
performance or statistical analysis. In the remainder of this paper we refer to RV as the 
union of RV and RM. 

In [DMS], the authors present a visual tradeoff space, called the Formal 
Validation and Verification (FV&V) tradeoff cuboid, which qualitatively compares three 
categories of  FV&V techniques: Model Checking (MC), Theorem Proving (TP), and RV 
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combined with automatic Test Generation (ATG). The tradeoff space compares the cost 
and test-space coverage associated with these three categories of techniques. This 
tradeoff space highlights the wide spectrum of systems for which RV has a favorable 
cost-performance ratio. 

In this paper, we use HMM’s to identify hidden events and sequences thereof, for 
the purpose of subsequent RV. We will not be using the (rather small) probability of an 
observable sequence, but rather the probability of a hidden state being reached given a 
sequence of observables. Hence, the technique identifies hidden events with a relatively 
high probability. 

This paper describes an extended RV technique suitable for systems in which not 
all artifacts are necessarily observable. The technique is a novel combination of Hidden 
Markov Models (HMM’s) with probabilistic RV of formal specification assertions. 
Throughout the paper, we will be using the Statechart assertion formal specification 
language of [D1, D2]. We will show a probabilistic variant of this formalism suitable for 
RV of systems with hidden inputs. 

Our proposed technique is suitable for the verification of complex systems in 
which visible data does not necessarily contain all the information required for 
monitoring the systems health or for verifying its behavior, as in the case of telemetry 
files of space missions. It is also suitable for monitoring the behavior of systems that are 
not fully accessible, such as a nuclear facility or distant unmanned vehicle, and for 
forensic applications, such behavioral analysis of a post-accident aircraft or automotive 
system using black-box information. 

The rest of the paper is organized as follows. Section 2 provides an overview of 
RV using UML-based statechart assertions. Section 3 provides an overview of HMM’s 
and HMM related algorithms. Section 4 describes our proposed extended-RV architecture 
and process that uses a combination of hidden and visible data, using an HMM connected 
to a special formal specifications monitor. Sections 5, 6 and 8 provide specific details of 
the two key components of this process: section 5 describes the HMM component, 
section 6 describes the operation of the formal specifications monitor, and section 8 
describes three techniques for computing the probability distribution used by that 
monitor. While sections 5 and 6 focus on formal specification assertions with hidden data 
- manifested as UML statechart conditions, section 7 extends the technique to formal 
specification assertions with hidden events. Section 9 extends the technique to assertions 
with hidden continuous data. Finally, section 10 compares our suggested extended-RV 
architecture with two alternative architectures. 

2. RV OF (DETERMINISTIC) FORMAL SPECIFICATION 
ASSERTIONS – AN OVERVIEW 

Runtime Verification (RV) is a light-weight formal verification technique in which the 
runtime execution of a system is monitored and compared to an executable version of the 
system’s formal specification. In other words, RV behaves as an automated observer of 
the program’s behavior and compares that behavior with the expected behavior per the 
formal specification.  
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The following formal specification example will be used throughout the rest of 
the paper. 

Consider the following Traffic Light Controller (TLC) requirement R1: whenever 
vehicle speed in the Main direction is greater than 42km/h for more than 2 consecutive 
minutes while lights in the Main direction are green, then lights in that direction should 
turn red within 30 seconds afterwards.  

Figure 1 depicts a statechart-assertion for R1. As described in [D1,D2], a 
statechart-assertion is a UML state-machine augmented with a Java action language and a 
built in Boolean flag named bSuccess, whose value indicates whether the assertion is 
succeeding (e.g., the input scenario conforms to R1) or failing (e.g., the input requirement 
violates R1).  

The statechart-assertion of Fig. 1 starts-up in the top-level Init state. When lights 
turn green (lightsTurnedGreen event) it transitions to the Init state of the OnGoing sub-
state of the Green super-state, where it polls until the Speed variable becomes HIGH 
(using a 1Hz clock tick event named clockTick); the assertion then transitions to the 
SpeedHigh state. It then polls for Speed to become non-HIGH within 2 minutes. If Speed 
value is or becomes not HIGH then the assertion waits in Green.OnGoing.Init until Speed 
turns HIGH again. If two minutes have elapsed then the assertion waits for an additional 
30 seconds, during which it checks whether lights have turned red as required. If so, then 
the process restarts in the top-level Init state. Otherwise, R1 has been violated and the 
assertion transition’s to the Error state where it sets the bSuccess flag to false. This flag 
indicates that the assertion has failed. 

 
Figure 1. A statechart-assertion for requirement R1. 

Fig. 2 illustrates the conventional RV architecture: an executable  formal 
specification assertion observes inputs and outputs of the SUT (the TLC in our example), 
and compares those sequences to the expected behavior; whenever that actual behavior 
violates the requirement the specification announces a failure. 



 4 

 
Figure 2. The RV architecture for the TLC and requirement R1. 

Fig. 3 depicts two timeline diagrams of validation tests for the assertion of Fig. 1, 
i.e., tests that assure the statechart-assertion correctly implements the natural language 
requirement R1. Fig. 3a depicts a test scenario that conforms to R1 – checking that the 
assertion succeeds for this scenario, as expected. Fig. 3b depicts a test scenario that 
violates R1 – checking that the assertion fails for this scenario, as expected. 

Validation testing is an important step in the process because the formal-
specification assertion is to be trusted to represent requirement R1 in the subsequent 
automated verification phase, discussed below1. 

 
a. Timeline diagram for validation test Test1. 

 
b. Timeline diagram for validation test Test2. R1 is violated by this scenario (as 

indicated by the JUNit Assert False arrow) because Speed is HIGH for more than two 
minutes while lights are green, yet lights didn’t turn red as required. 

Figure 3. Timeline diagrams for two validation tests for the statechart-assertion of 
Fig. 1. 

Verification is performed by comparing a trace of the system (e.g., as captured by 
a log file) to the behavior of the assertion set. The StateRover tool  does so using a two 
                                                 1 Further details about validation testing is available in [D2]. 

TLC 

Sensors 
Formal 
spec. 
assertion 
(Fig. 1) 

Speed 

Light colors 

Success
/Fail 
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step process. First, the log file is converted into an equivalent JUnit test [JU], and the 
assertion is code-generated into an equivalent Java class (details about this code generator 
are available in [D1]). Next comes the RV step, the JUnit test is executed, thereby 
checking that the log-file trace conforms to the requirement as manifested by the 
assertion. 

The extended-RV technique suggested in this paper uses the same process for the 
development and validation of assertions, i.e., assertions are developed as deterministic 
assertions. However, rather than performing deterministic RV by the virtue of using an 
assertion code generator that generates a deterministic implementation, our technique 
performs probabilistic RV using a special assertion code generator that generates a 
probabilistic, weighted implementation. Specific details are provided in section 6. 

3. HIDDEN MARKOV MODELS 
A (discrete) hidden Markov model (HMM) is a statistical Markov model in which 

the system being modeled is assumed to be a Markov process with unobserved, or hidden 
states. while in a regular Markov model, the state is directly visible to the observer, in a 
hidden Markov model the state is not directly visible, while the output, dependent on the 
state, is visible.  

The parameters of a simple HMM are [Ra]: 
 N, the number of states in the model. Individual states are denoted S = {s1, s2,...sN}, 

and the state at time t as qt. 
 M, the number of distinct observation symbols. Individual states are denoted V = {v1, 

v2,...vM}. 
 The state transition probability distribution A = {aij} where aij = P[qt+1 = sj|qt = si], 1  

i,j  N. Clearly, i, 1 i N, 1  j N  aij= 1. 
 The observation symbol probability distribution in state j, B={bj(k)}, where bj(k) = 

P[vk at t | qt = sj], 1  j N, 1 k  M. 
 The initial state distribution  = { i}, where i = P[q1 = si], 1 i N. 

 
Rabiner [Ra] describes the following three primary problems associated with 

HMM’s: 
1. Given the observation sequence O = O1O2...OT, and an HMM model  = (A,B, ), 

how do we efficiently compute P(O| )? 
2. Given the observation sequence O = O1O2...OT, and an HMM model  = (A,B, ), 

how do we choose an optimal state sequence Q = q1 q2...qT? 
3. How do we calculate the model parameters  = (A,B, ) to maximize P(O| )? 

The most well known algorithms used to solve these problems are: 

1. The forward algorithm, for calculating the forward variable t(i) = P(O1O2...Ot, qt = 
si | ). The forward algorithm is a dynamic programming algorithm based on the 
recurrence:  

t+1(j) = [ i=1..N t (i)aij ] bj (Ot+1), 1 t T-1, 1 j N, 
with the initialization: 
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  1(j) = j bj(O1). 
Note that P(O1O2...Ot| )= i=1..N t(i).  

` is the normalized version of : 
`t(j)=P(qt=si|O1O2...Ot, ), calculated recursively as: 

`t+1(j)= t+1(j)/P(O1O2...Ot| ). 

2. The backward algorithm, for calculating the backward variable t(i) = 
P(Ot+1Ot+2...OT |qt = si, ). The algorithm is a dynamic programming algorithm based 
on the recurrence:  

t(i) = j=1..N  aij  bj (Ot+1) t+1(j), for  
t =T-1,T-2,...,1, and 1 i N, 

with the initialization: 
 T(i) = 1, for 1 i N. 

3. The forward-backward algorithm, for calculating the forward-backward variable  
t(i)= P(qt = si | O1...OT, ).  
 is also: 
t(i)=( t(i)  t(i))/ P(O1O2...OT| ) 
 can also be expressed as: 
t(i)=∑1 j N t(i,j) where: 

t(i,j) = ( t(i) aij bj(Ot+1) t+1(j))/P(O1O2...OT| ). 
4. The Viterbi algorithm, for calculating the best state sequence that explains an 

observation sequence, T(O1O2...OT | ). The algorithm defines: 
 t(i)=max[q1,q2,... qt-1] P(q1,q2,...qt=si, O1O2...Ot | ), 

and uses the following recursive formula: 
  t(j) = max1 i N [ t-1(i) aij] bj(Ot) 
along with the following formula, used to recover the actual most probable 

state sequence: 
 t(j) = argmax1  i  N [  t-1(i) aij], where  1(j)=0; 

The Viterbi algorithm is essentially the forward algorithm with a recurrence in 
which a max operator is used instead of the sum. The probability of best state 
sequence T(O1O2...OT | ) is then the maximal   T(i), 1  i  N, and qT = argmaxi  

T(i), 1  i  N. 
The most probable state sequence q1,q2,...qT is calculated in a backward 

manner, using qt-1 =  t(qt). 

4. RV OF SYSTEMS WITH HIDDEN STATES 
Suppose our TLC is being monitored or verified. Suppose also that, as assumed 

by the statechart-assertion of Figure 1, it emits 3 color change events: (lightTurnedRed, 
lightTurnedGreen, and lightTurnedYellow), but it not have a Speed input or output. 
Instead, the TLC has input sensors that measure the frequency of cars going through the 
junction in a particular direction (e.g., in the Main direction). In other words, frequency is 
an observable whereas speed is a hidden artifact. 
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To enable RV of the TLC with respect to R1 and its corresponding statechart-
assertion, we modify the architecture of Fig. 2 as depicted in Fig. 4. This architecture 
differs from the conventional RV architecture of Fig.1 in three main aspects: 
1. It contains a Hidden Markov Model (HMM), used to decode the probability of 

occurrence of sequences of hidden Speed states given sequences of the frequency 
observable. This HMM provides a plurality of weighted Speed inputs to the 
statechart-assertion, instead of a unique un-weighted Speed input used in Fig. 1. 
Detailed of the HMM are discussed below. 

2. It uses a special code generator that generates a probabilistic implementation for the 
statechart assertion(s), one that operates on the weighted inputs from the HMM. 

3. It evaluates the assertion using a success score in the range [0,1]. 

 
Figure 4. The RV architecture for the TLC and requirement R1 when the Speed 

input is hidden. 
In our example, visible frequency measurement pertains to a sensor under the 

Main Street that measures the frequency of cars driving over the sensor. The sensor 
produces symbols, f1,f2,…,f5 where fd represents a measured frequency in the range of (d-
1,d] cars per second, for all d 2.  Loosely speaking, using a 4 meter per car metric 
(including car to car spacing), Speed = 14.4*f km/h. We categorize 3 ranges of speeds for 
cars going over the sensor, as follows: (i) HIGH: cars speed is above 40 km/h, (ii) LOW: 
car speeds below 15 km/h, and (iii) MED: for all other possibilities.  

While we could use the above-mentioned stationary process do deduce the hidden 
Speed value-range from the visible frequency measurement, it does not account for 
dynamic aspect of the system. First, it does not account for the fact that distances 
between cars change with car-speed, rendering the 4 meters per car estimate inaccurate. 
Also, it is expected for Speed to seldom change from HIGH to LOW directly.  

Consequently, we use an HMM to model this random process. Figure 5 depicts an 
HMM for the TLC example. Its parameters are: 
 The state set Q consists of three states that correspond with Speed, namely, HIGH, 

MED, and LOW, also denoted as states 0, 1, and 2, respectively. Note that it is not a 
coincident that the HMM states capture the hidden variable in the assertion of Fig. 1; 
we will discuss this relationship in section 5. 

 An observable O, which takes on one of the fd symbols discussed earlier. 
                                                 2 We assume that frequencies above 5 cars/sec are measured as 5 cars/sec. 

TLC 

Sensors 

Formal spec. 
assertion 
(Fig. 1) with 
weighted 
implementati
on (described 
in section 6) 

 

Frequency 
HMM 

S
peed Light colors 

Success score [0..1] 
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 Transition probabilities are indicated along the edges of Fig. 5. 

 
Figure 5. Speed random variable HMM states and transition. 

 bs(O), the probability of an observable O being  observed in state s, is listed in Table 
1. 

O\state HIGH MED LOW 
f1 0.02 0.18 0.63 
f2 0.22 0.53 0.26 
f3 0.47 0.17 0.11 
f4 0.2 0.11 0 

f5 0.1 0.01 0 
Table 1. Probability of observation O in TLC state s  

 The initial state distribution is [0.3, 0.5, 0.2] for HIGH, MED, and LOW, 
respectively. 

RV now proceeds according to the process illustrated in Fig. 4, as follows. 
Sampled frequency values are periodically fed into the HMM, which then executes a 
probability estimation algorithm, such as the forward-algorithm for the current iteration 
(section 8 discusses three probability estimation techniques). These probability values 
represent probabilities of the HMM being in states HIGH, MED, and LOW, respectively. 
This vector of symbols and corresponding probabilities is passed to the assertion’s 
implementation code, which executes a weighted version of a state-machine state change, 
detailed in section 6. Finally, as discussed in section 6, the assertion announces the 
probability it detected a requirement violation.  

A more realistic HMM for deducing car speed is one in which the observable 
frequency is a continuous random variable (called Frequency), e.g., with a normal 
distribution whose probability density function (PDF) is fO(o)~N( , 2), rather than a 
Categorical distribution (as the case for TLC-example, whose distribution is listed in 
Table 2). Using the TLC example again, the probability estimation algorithm of choice 
(elaborated in section 8) will use fFrequency(frequency, j), the Frequency PDF in state j, 
instead of bj(frequency). 

State
: 

H
IGH 

M
ED 

L
OW 

 (cars/sec) 3.125 2 0.55 
 (cars/sec) 0.35 1 0.50 

Table 2. Normal distribution parameters of observation O in TLC states. 

HIGH 

0.7 

MED 

0.6 

LOW 

0.8 

0.05 

0.05 

0.2 
0.15 

0.25 
0.2 
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5. FROM ASSERTIONS TO HMM PARAMETER ESTIMATION 
HMM parameter estimation, i.e., estimating the transition probability and 

probability of state observations, is a difficult problem. In particular, it is difficult to 
estimate the number of HMM states, the extreme cases being using one state (i.e., 
reducing the HMM to a stationary process) or n states, n being the length of the 
observation sequence.  

In our case however, HMM states are known; they are directly related to the 
hidden artifacts in the assertions. For example, in the TLC case, the three hidden symbols 
pertain to Speed values HIGH, MED, LOW, which are derived from Fig. 1 and its 
requirement R1, as well as from an assertion for the following requirement: 

R2: if vehicle speed in the Main direction is between 15 and 30 km/h for more 
than 2 consecutive minutes while lights in the Main direction are green, then lights 
should remain green for a total of 4 minutes.  

Fig. 6a depicts a statechart assertion for requirement R2, and Fig. 6b depicts a 
timeline diagram for a validation test for this assertion. 

 
a. Statechart assertion and validation test for requirement R2 

 
b. A timeline diagram of a validation test for the statechart-assertion of (a) 

Figure 6. Statechart assertion and validation test for requirement R2. 

 Our use-case for HMM’s is simpler than usual in one additional aspect: 
calculating transition and observable probabilities. Because HMM states relate to real 
world artifacts (e.g., car speed values), we can conduct learning-phase experiments which 
measure relative frequencies, such as one in which all speeds and sensor frequencies are 
measured on a 1-second period basis; all HMM probabilities follow trivially. This is the 



 10 

case whether observables are distributed using a Categorical distribution or some 
continuous distribution.  

Consequently, we can deduce the workflow for developing the components of the 
architecture of Fig. 4, as depicted in Fig. 7. 

 
Figure 7. Workflow for developing the RV components of Fig. 4. 
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6. RV OF ASSERTIONS WITH PROBABILISTIC INPUTS 

Using the architecture of Fig. 4, the formal specification assertion module 
observes sequences that consist of visible as well as hidden artifacts; in Fig. 1 for 
example, lightsTurnedRed, lightsTurnedYellow,  lightsTurnedGreen, timeoutFire, and 
clockTick event  are visible, while Speed is hidden. Hidden artifacts have an associated 
probability distribution which we call the probability-of-occurrence distribution (POD), 
such as POD-1: Speed=HIGH, MED, LOW at time 5 occurs with probability 0.72, 0.2, 
0.08, respectively. Section 8 describes three techniques, called `, , and ``, for 
computing the cycle-by-cycle POD, based on , , and , respectively. We consider a 
visible artifact to have a probability of occurrence of 1. 

A weighted/probabilistic implementation of the statechart assertion module of 
Fig. 4 responds to an input sequence I = <S1, P1>, <S2, P2>,.., <ST, PT>, where St is a 
visible or hidden artifact (i.e., event such a clockTick, or data artifact, i.e., variable, such 
as Speed, both in Fig. 1), and Pt is the POD of St.  

We use the UML notation for St, St=eventt[conditiont], where conditiont is 
optional; eventt and conditiont can either or both be visible or hidden.  

An assertion’s implementation consists of a collection C of instances, or copies, 
of the assertion, called configurations. Each configuration executes as a standalone 
assertion and preserves its own present-state. Each configuration Con has a probability 
measure P(Con), called the Configuration Probability Measure (CPM), that measures the 
probability the assertion is behaving as suggested by Con, i.e., that its present-state is 
Con’s present state. Upon startup, C consists of a single configuration Condefault whose 
present-state, denoted PS(Condefault), is the assertion’s default state (e.g., state Init in Fig. 
1), and having P(Condefault)=1.   

All configurations of C respond to a pair <St,Pt> of I, as  follows. If Pt = 1 then 
the configuration performs a conventional state machine state change upon input Si, such 
as SpeedHigh timeoutFire SpeedHishFor2Min, in Fig. 1. Otherwise, either eventt or 
conditiont are hidden. In this case the configuration Con is replaced with two 
configurations: Con1 and Con2, whose present-state probabilities are calculated as 
follows: 

 If eventt is hidden (as discussed in section 7) then  P(Con1) = P(Con)*Pt  and P(Con2) 
= P(Con)*(1-Pt).  

 If conditiont is hidden, then we calculate P(conditiont), the probability of the 
condition, as a function of the probabilities of its constituent variables using standard 
probability. For example, if conditiont is Speed = HIGH || Speed = MED then 
P(conditiont) = P(Speed = HIGH) + P(Speed = MED), where each term is taken from 
the POD at time t, such as 0.72 and 0.2 respectively, using POD-1.  

We set P(Con1)=P(Con)P(conditiont), and P(Con2)=P(Con)(1-P(conditiont)). 
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Let PS(Con) denote Con’s present-state. PS(Con1) and PS(Con2) are determined 
as follows: 

 If eventt is hidden (as discussed in section 7) then PS(Con1) is the next state 
determined by the assertion’s transition out of PS(Con), under the assumption that the 
event  fired, and PS(Con2)= PS(Con). 

 If conditiont is hidden (e.g., Speed==HIGH condition in Fig. 1), then PS(Con1) is 
calculated assuming conditiont=true and PS(Con2) is calculated assuming 
conditiont=false,   

For the sake of simplicity we disallow assertions in which both eventt and 
conditiont are hidden. 

C configurations are routinely (i..e, every cycle t) managed as follows. All 
configurations Con` with the same present-state3 are merged into a single configuration 
Conmerged, using the sum of all P(Con`) as P(Conmerged). 

The statechart assertion declares a probability of failure (POF), i.e., the 
probability its corresponding requirement has been violated, on a cycle by cycle basis, 
being the sum of all P(Con) for all configurations Con such that PS(Con) is an error state. 

Note that statechart assertions typically have error states that are sink states, i.e., 
states with no outgoing transitions. For such assertions, the POF is monotonically 
increasing with time. 

7. RV OF ASSERTIONS WITH HIDDEN EVENTS  
UML statecharts, message sequence diagrams (MSC’s), and other formalisms are 

intrinsically event driven. In fact, the statechart assertions of Figures 1 and 6a are event 
driven, using events such as lightsTurnedRed and the 1Hz clockTick event. However, as 
presented in section 4, HMM symbols are propositional in nature - , manifested as the 
states of the HMM, such as the Speed variable. Consequently, the assertions of Figures 1 
and 6a must poll the Speed variable using the 1Hz clockTick event. In contrast, Fig. 8 
depicts an event driven assertion for requirement R1; it uses hidden events 
speedChangedToHIGH and 

speedChangedFromHIGH.  
 

                                                 
3 More accurately, PS(Con) is an extended state vector, that includes the state variable and the states of 

all local variables, such as the timer state and the bSuccess flag. 
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Figure 8. An event driven statechart assertion for requirement R1 that uses hidden 
events 

The probability of these two events is induced by the probability of an HMM 
transition from state i to state j being traversed at time t, i.e., by t(i,j). Hence, their 
probabilities are: 

1. P(event speedChangedToHIGH occurring at time t |O, ) = ∑1 i  N t(i,0). 

2. P(event speedChangedFromHIGH occurring at time t |O, ) = ∑1 j  N t(0,j). 

8. GENERATING THE PROBABILITY OF OCCURRENCE OF A 
HIDDEN ARTIFACT 

We propose three techniques for estimating the POD at time t: the alpha, gamma, 
and delta methods, as follows. 

 The alpha method, which uses N values of `t(i)=P(qt=si|O1O2...Ot, ), one per 
symbol si, 1 i N. Note that ∑1 i N `t(i) = 1. 

 The gamma method, which uses N values of t(i)=P(qt=si|O1O2...OT, ), one per 
symbol si, 1 i N. Note that ∑1 i N t(i) = 1. 

 The delta method, which uses N values of: 
t``(i) = t`(i)/∑1 i N t`(i), where  
t`(i) = max[q1,q2,... qt-1]P(q1,q2,...qt=si| O1O2...Ot , ), where 

P(q1,q2,...qt=si| O1O2...Ot , )= t(i)/P(O1O2...Ot). In other words, t``(i) is a 
normalized version of t`(i), which in turn is the probability of the HMM generating 
symbol si at time t, via the most probable state sequence, given the observation. 

The gamma method is a backward-forward algorithm; it therefore requires the 
entire observable sequence O1O2...OT for the evaluation of t(i) for t  T. The alpha and 
delta methods on the other hand, are forward algorithms and therefore do not require 
future information for the calculation of `t(i) and t``(i). Nevertheless, scaling issues 
discussed below effectively imply that no matter what method is used, it can only be used 
verbatim with a limited number of observables. In section 10 we suggest a remedy to this 
limitation. 

When the HMM contains transitions with probability 0, then all three methods 
might induce sequences of symbols that cannot be physically generated. For example, 
consider an an HMM with N=3 and a1,2=0, and  suppose t(1)=0.3 and t+1(2)=0.2; The 
assertion then cosiders the  sequence s1, s2 as possible, having a positive probability of 
0.06.  

All three methods suffer from inherent scaling problems, because the calculation 
of `t(i), (i), and t``(i) generate values that scale down geometrically with t.   There are 
published numerical techniques designed to mitigate this problem [Ma]; nevertheless, this 
constraint limits the length of the sequence of observables O1O2...OT, and its 
corresponding sequence I = <S1, P1>, <S2, P2>,.., <ST, PT> of assertion inputs. 
Meanwhile, the RV process, in of as itself, is not necessarily limited in duration, and 
might continue working for intervals longer than T.  
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A straight-forward solution to the scaling problem is to perform RV using a 
sequence of frames of observables of length T, where the probability measurement values 
computed at time T (i.e., `T(i), T(i), or T``(i)) of  a certain frame  are used as i for the 
following frame. This approach however, introduces an error or noise every time we 
reload the frame buffer. 

To circumvent this problem, we propose the following smoothing approach in 
which we use two partially overlapping buffers of observables of length T. Buffer B1 
contains observables On+1On+2...On+T, while buffer B2 contains observables 
Om+1Om+2...Om+T, where m=n+T/; in other words B1[t]=B2[t+T/2] if t  T/2 and 
B1[t]=B2[t-T/2] otherwise.  This is applied repeatedly for frames n=0,1,2,..,  where the 
roles of B1 and B2 alternate. Now suppose we are using the gamma method; we apply it 
to each buffer, resulting in 1

t(t) and 2
t+T/2(t) if t T/2, and 1

t(t) and 2
t-T/2(t) otherwise. 

Finally use the average of these two  values as our actual t(t) using a weighted average 
that weighs the j

t(t) value that is closer to the center of its buffer more that the one that is 
farther away from the center of its buffer: 

t(t) =  (2t 1
t(t) + (T-2t) 2

t+T/2(t))/T, if t  T/2 
t(t) =  ((2T-2t) 1

t(t) + (2t-T) 2
t+T/2(t))/T, otherwise. 

In future research we will conduct experiments that measure the deviation of 
`T(i), T(i), and T``(i) from their true values when this method is used. 

9. RV OF ASSERTIONS WITH HIDDEN CONTINUOUS DATA 
While requirement R1 asserts about vehicle speed greater than 42km/h in the 

Main direction, the matching statechart assertion of Fig. 1 asserts about Speed values 
being one of the symbols (HMM states) HIGH, MED, or LOW; as a consequence, the 
task of matching HMM states to vehicle speed values becomes the TLC’s HMM 
designer’s responsibility, while this is actually a requirement vs. assertion matching issue. 

An additional drawback of this approach is that the random variable being 
asserted about (Speed, in the TLC case) typically has a more complex distribution than 
the simplistic Categorical distribution. 

Suppose that TLC Speed is not the HMM state, but a random variable associated 
with the state, one with a continuous distribution such as a normal distribution. The Table 
3 example lists the parameters of the Speed random variable distribution for the TLC 
example. 

State: HIGH MED LOW 
Name of 
distribution 

F0 F1 F2 

 (km/h) 40 28 14 
 (km/h) 12 15 10 

Table 3. Normal distribution parameters of the Speed random variable TLC states. 
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Using this framework, we can now use a variant of the assertion of Fig. 1 that 
uses transition conditions Speed>42 and Speed≤42 instead of Speed=HIGH and 
Speed!=HIGH, respectively, thus addressing the letter of requirement R1. 

Let Speed(t,i) denote a random variable (r.v.) representing Speed when the HMM 
is in state i at time t. We assume its distribution is time independent, and therefore write 
Speed(i); its cumulative distribution-function (CDF) is FSpeed(i)(speed) = P(Speed speed | 
qt=si, ). We also make the following counter-intuitive assumption: Speed(i) is 
independent of the observables (sensor frequency measurements), given the present state 
si. It is counter intuitive because after-all, vehicle speed seem to depend on those 
frequencies. Nevertheless, the dependence is totally manifested by the qt=si, and given 
that, Speed(i) is independent of the observables.  

We now define modified variables , , and , as expressions rather than literal 
numbers, as follows: 

 Speed, t(speed, i)=P(O1O2...Ot, Speed speed, qt=si| ).  
Clearly,  

Speed, t(speed, i)= 
P(O1O2...Ot, qt = si | ) P(Speed speed | O1O2...Ot,qt=si , ) =  

t(i) P(Speed speed | qt = si , ),  
the last equality  results from Speed(i) being independent of the observables. 

Hence: 
Speed, t(speed, i) = t(i) FSpeed(i)(speed).  

The normalized version, ` is: 
` Speed, t(speed, i) = `t(i) FSpeed(i)(speed).  

 Speed,t(speed,i) = P(Ot+1Ot+2...OT, Speed(i) speed | qt=si, ). As in the case of , 
Speed,t(speed,i)= t(i)FSpeed(i)(speed). 

 Speed,t(i)= P(Speed(i) speed, qt = si | O1...OT, ) =  t(i) t(i) FSpeed(i)(speed) / 
P(O1...OT).  

Rhe RV process of section 6 is modified as follows. In addition to using the alpha 
or gamma methods to calculate a Categorical POD for HMM states such as POD-1, we 
calculate  or , respectively, using an instance value of speed (e.g., speed = 42) based 
on the assertion. More specifically, given an RV computation Con, the calculation of 
P(Con1) and P(Con2) discussed in section 6 is modified as follows: 

 If eventt is hidden, the calculation is unchanged, because the probability of a transition 
being traversed only depends on states and observations, not on the Speed variable. In 
other words, Speed only pertains to conditions in the assertion statecharts, not events. 

 If conditiont is hidden, as in Speed≤42 in the modified assertion of Fig. 1, then we 
calculate P(conditiont), the probability of the condition, by evaluating the expected 
value of `t(42, i) namely,  

∑1  i N `
t(i) FSpeed(i)(42) for the alpha method,  or the expected value of t(42, 

i) namely, ∑1 i N t(i) FSpeed(i)(42), for the  gamma method. 



 16 

We set P(Con1)=P(Con)P(conditiont), and P(Con2)=P(Con) (1-
P(conditiont)), as in section 6. 

10. A COMPARISON OF RV ARCHITECTURES 
We considered the following two architectures for RV of systems with hidden 

information, in addition to the weighted-probabilistic assertion architecture of Fig. 4: 

The first alternative architecture, denoted the deterministic assertion architecture, 
resembles that of Fig. 4, but has the HMM connected to a purely deterministic formal-
specification assertion, instead of a weighted probabilistic module described in section 6. 
In other words, this architecture is the architecture of Fig. 4 where the Formal 
Specification Assertion block implements assertions using a conventional deterministic 
implementation, such as the one described in [D1]. 

Because this approach uses a deterministic assertion, it can only use a single 
sequence of input symbols from the HMM, such as the sequence a1,a2,…,aT where at= 
max1 i N( t(i)). However, the following example demonstrates the weakness of this 
approach. 

Consider the TLC scenario depicted in Fig. 9a. Using the above mentioned single 
sequence method it induces the sequence seq1 of hidden states depicted in Fig. 9b, with 
probability P1= T(seq1)=9.677258147046034E-7. This sequence conforms to 
requirement R1 because it does not contain two consecutive minutes of Speed=HIGH 
while lights are green.  

In contrast, the sequence seq2 of state symbols depicted in Fig. 9c violates R1. It is 
not generated by the single sequence method because its probability is P2= T(seq2)= 
4.639731359753094E-11 is smaller than P1. 

The alpha and gamma methods are capable of generating the later sequence, 
thereby enabling our suggested weighted-assertion architecture to detect the violation of 
R1 failure with a non zero probability. Fig. 10 shows the distribution of ` and  for seq1 
and seq2. Note how the ` method generates identical distributions when the observation 
sequences seq1 and seq2 agree, because when the observation sequences agree on the 
HMM state qt=st, then given that state, the observation Ot is independent of prior 
observations and states. In contrast,  the  method depends on future observations too, 
and Ot is not necessarily independent of those. 

 
a. Timeline diagram of sequence of a observables O  
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b. Timeline diagram of seq1, the most probable state sequence that explains O according 

to the single sequence method. This sequence conforms to requirement R1 

 
c. Timeline diagram of seq2, a less probable state sequence due to the time interval 

[95,99]; this sequence violates requirement R1 

Figure 9. Scenarios that discriminate between the weighted-probabilistic assertion 
architecture and the deterministic assertion architecture 

 
a. The distribution of  ` for seq1 

 

b. The distribution of  ` for seq2 

 

c. The distribution of   for seq1 

 

d. The distribution of   for seq2 

Figure 10. The distribution of ` and  for seq1 and seq2 
The second alternative architecture, denoted the monolithic architecture, contains 

no standalone RV module. Rather, the HMM itself, being a probabilistic state machine, 
performs the RV tasks. 
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With this approach, the assertions are combined with the symbol decoding HMM 
inducing a much larger HMM.  

Two primary drawbacks of this approach are: 

a. The overall RV system is hard to read and maintain; with no separation of concerns 
within the HMM, it is effectively performing two distinct jobs: (i) decoding hidden 
symbols from visible ones, and (ii) monitoring or verifying a requirement such as R1 or 
R2.  

b. The HMM is the monolithic architecture, being larger and harder to read, will be 
harder to learn using the experimental approach discussed in section 5. 

11. CONCLUSION 
We have demonstrated a technique for performing RV in the presence of hidden 

evidence.  We plan on applying this technique to the verification of aerospace 
applications, in which the evidence is provided as telemetry files that often do not contain 
the artifacts asserted about by the formal specifications. We also plan on applying this 
technique to automatic pattern detection within large volumes of cyber data, in an effort 
to identify malicious or dangerous behavioral patterns.    

We are currently building a special StateRover code-generator that generates 
weighted/probabilistic implementation code for statechart assertions.   

Considering the TLC example, one might wonder how the TLC itself is 
implemented to conform with requirement R1, given that the Speed variable is hidden. In 
other words, wouldn’t TLC developers face the same difficulties when implementing the 
TLC as the quality assurance team faces when asserting about it? Indeed, in on-going 
research we are investigating the use of the proposed technique for controllers that 
operate in difficult environments where some of the inputs are not directly observable, as 
often the case in hostile environment. 
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